Given:
⇒ 2 Pawn = Knight, and
⇒ Knight + Pawn = Bishop
From Equation 3rd:
⇒ Knight & Pawn + Knight & Pawn + Knight & Pawn = 18
⇒ (Knight + Pawn) + (Knight + Pawn) + (Knight + Pawn) = 18
Given: 2Pawn = Knight, therefore;
⇒ (Pawn + Pawn + Pawn) + (Pawn + Pawn + Pawn) + (Pawn + Pawn + Pawn) = 18
⇒ (3Pawn) + (3Pawn) + (3Pawn) = 18
⇒ 9 Pawn = 18
⇒ Pawn = 18/9 = 2
⇒ Pawn = 2
>>> Again equation 3rd:
⇒ (Knight + Pawn) + (Knight + Pawn) + (Knight + Pawn) = 18
Put Pawn value i.e. 2
⇒ (Knight + 2) + (Knight + 2) + (Knight + 2) = 18
⇒ Knight + 2 + Knight + 2 + Knight + 2 = 18
⇒ 3 Knight + 6 = 18
⇒ 3 Knight = 18 – 6
⇒ 3 Knight = 12
⇒ Knight = 12/3 = 4
⇒ Knight = 4
Given: Knight + Pawn = Bishop, (rewrite the equation 3rd)
⇒ (Knight + Pawn) + (Knight + Pawn) + (Knight + Pawn) = 18 (Equation 3rd)
⇒ Bishop + Bishop + Bishop = 18
⇒ 3Bishop = 18
⇒ Bishop = 18/3
⇒ Bishop = 6
From Equation 1st:
⇒ Queen & Pawn + Queen & Pawn + Queen & Pawn = 30
⇒ (Queen + Pawn) + (Queen + Pawn) + (Queen + Pawn) = 30
Put the value of Pawn = 2, we get;
⇒ (Queen + 2) + (Queen + 2) + (Queen + 2) = 30
⇒ Queen + 2 + Queen + 2 + Queen + 2 = 30
⇒ 3 Queen + 6 = 30
⇒ 3 Queen = 30 -6
⇒ 3 Queen = 24
⇒ Queen = 24/3
⇒ Queen = 8
From Equation 2nd:
⇒ Bishop & Rook + Bishop & Rook + Queen & Rook = 35
⇒ (Bishop + Rook) + (Bishop + Rook) + (Queen + Rook) = 35
Put the value of Bishop = 6 and Queen = 8, we get;
⇒ (6 + Rook) + (6 + Rook) + (8 + Rook) = 35
⇒ 6 + Rook + 6 + Rook + 8 + Rook = 35
⇒ 20 + 3 Rook = 35
⇒ 3 Rook = 35 -20
⇒ 3 Rook = 15
⇒ Rook = 15/3
⇒ Rook = 5
>>Now we have:
Pawn = 2, Knight = 4, Bishop = 6, Rook = 5, and Queen = 8
Last Equation:
⇒ Bishop + Rook × Knight − Queen = King & Pawn
⇒ 6 + 5 × 4 − 8 = (King & Pawn)
⇒ 6 + 20 − 8 = (King & Pawn)
⇒ 26 − 8 = (King & Pawn)
⇒ 18 = (King & Pawn)
Now we know:
⇒ King + Pawn = 18 (Put Pawn value i.e 2)
⇒ King + 2 = 18
⇒ King = 18 – 2
⇒ King = 16 (Answer)
Description : Given: ⇒ 2 Pawn = Knight, and ⇒ Knight + Pawn = Bishop From Equation 3rd: ⇒ Knight & Pawn + Knight & Pawn + Knight & Pawn = 18...
0 Response to "Quiz 11"
Post a Comment